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Abstract—This paper deals with an automatic di-
agnosis tree generation application based on the AO*
algorithm. The inputs of this application are the faults
which may occur on the system to diagnose with their
respective occurrence probability, the tests that can
be realized on it and the cross-table which affects to
each (fault/test) pair the set of modalities which are
expected as result of the test when the fault occurs.
The main drawback of this application, is that it often
spends too much computation time to obtain an op-
timal diagnosis tree. Then, two methods which allow
to obtain a suboptimal diagnosis tree rather than an
optimal one are proposed in order to reduce this too
important computation time.

I. INTRODUCTION

In the automotive manufacture domain, the use of
ECUs (Electronic Control Units) to control several func-
tions (such as engine injection, air conditioning or ABS)
has been widely developed during these last years. To
control the concerned function, many electronic circuits
constituted by sensors and switches are plugged on these
ECUs. These ECUs are equiped with an auto-diagnosis
function which allows to detect with security which of
these plugged on electronic circuits are failing. However,
knowing the failed electronic circuit, the ECU is not able
to localize the faulty replaceable component. In order to
diagnose such electronic circuit, diagnosis trees are built.
These trees allow the garage mechanic to find the faulty
replaceable component(s) by performing a sequence of
tests (measurements) which has the lowest global cost as
possible. Nowadays these diagnosis trees are hand made
by human experts. This task requires more and more time
and becomes more and more difficult as the complexity of
electric circuits and mecatronic systems increases. Conse-
quently, errors are not unusual in the resulting diagnosis
trees. As a matter of fact, it becomes urgent to reduce
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the human intervention in the diagnosis tree generation
process at the lowest.

Especially dedicated to resistive network circuits sup-
plied by one unique voltage source, the off-line automatic
diagnosis tree generation application proposed by Faure
(see [1]) may be divided into the two following steps:

1. From the structural model of the system to diagnose
and the intrinsic behavioral models of each of its com-
ponents, building a prediction table which crosses the
set of the possible single faults that may occur in the
system with the set of the possible tests that may be
realized on it.

2. From the prediction table obtained from the previous
step, generating the optimal diagnosis tree according
to the Pattipati’s method (see [2]) extended to non
exclusive multi-modality tests (see [1]).

This paper deals with the second step of this applica-
tion and proves the optimality of the proposed Pattipati’s
method extension for the diagnosis tree generation prob-
lem with multi-modality non exclusive tests.

Moreover, two methods which allow to obtain subopti-
mal diagnosis trees rather than optimal ones in order to
reduce the application processing time are proposed.

The paper is then organized as follows.

Section 2 sets the optimal diagnosis tree generation
problem with the main following concepts : fault, test,
cross-table, diagnosis tree and discriminating tests sub-
set.

Section 3 briefly presents the initial Pattipati’s method
to generate automatically optimal diagnosis trees with ex-
clusive binary tests.

Section 4 details the extension of this method to non
exclusive multi-modality tests.

Section 5 defines the optimal discriminating tests subset
which allows to obtain the optimal diagnosis tree by the
same application more quickly than with the initial tests
set.

Section 6 then proposes two suboptimal discriminating
tests subsets which allow to obtain suboptimal diagnosis
trees by the same application more quickly than with the
initial tests set.

Section 7 studies quality criterion of a discriminating
tests subset which includes both the quality of the obtain
diagnosis tree and the application processing time.



Finally, section 8 concludes on the contributions of this
paper.

II. DIAGNOSIS PROBLEM

A. Faults

Let E be the set of the ng elementary components ey,
with & € {1,...,ng} which constitute the system to di-
agnose. Let m., be the number of abnormal behavior
ABy(e) with [ € {1,...,n,,} of the elementary compo-
nent ey and —AB(ey) its normal behavior.

A fault is a ng vector which associates to each of the
ng elementary component e one of its n., abnormal be-
havior or its normal one.

For such a system, [];.Z, (n¢, + 1) faults may occur.

To be useful, a diagnosis application has to discrimi-
nate faults which have the highest probabilities. The aim
of this subsection is to reduce the exhaustive set possible
faults to the subset of faults which have the highest prob-
ability to occur. In practice, the occurrence probability is
obtained from the Mean Time To Failure (MTTF) given
by the designer (see [3] and [4])

For the following, let F' be the set of the nyp most prob-
able faults f; with ¢ € {1,...,np} to discriminate and p;,
their respective a priori occurrence probability.

B. Tests

A test may be a physical variable (such as potential
point, intensity or equivalent resistance) measurement or
an observable (such as ”look at the brightness of a light”
or "listen to a particular noise”) manifestation to real-
ize. For each test, several results, called modalities (which
may be as well exact values, value intervals, or qualitative
modalities), are possible. The association of a test and
one of its modalities is an observation.

Definition 1 (Exclusive test) A test is said to be ex-
clusive if, for any fault, one and only one modality is ex-
pected for the concerned test.

Definition 2 (Multi-modality test) A test is said to
be multi-modality if it has a number of modalities, that is
to say possible value (i.e. observations), greater or equal
than two.

Definition 3 (Binary test) A test is said to be binary
if it has a number of modalities, that is to say possible
value (i.e. observations), exactly equal to two.

Definition 4 (Test cost) Each test has a cost which
represents the difficulty (measurement tool configuration,
system structure modifications required by the measure-
ment, measurement points accessibility...) to realize it.

Definition 5 (Unit test cost assumption) Under
unit test cost assumption, the test cost is equal to 1 for
any considered test.

The role of a test is to reduce the current set of faults
which may be responsible of the system failure. Conse-
quently, the diagnosis problem is equivalent to select the
test which ensures the best discrimination between the
faults of this current faults set.

For the following, let S be the set of the ng tests s;
with j € {1,...,ns} to discriminate, n%, their respective
number of possible modalities mi with k € {0, ..., ng\/[ -1}
and c;, their respective realization cost.

C. Cross-table

Given F and S defined as previously, the corresponding
cross-table has np lines and ng columns. Each of its cells
C(i,j) contains the set of n}/ modalities among the n?,
possible ones which are expected as result of the s; test
in occurrence of the f; fault. )

Moreover, the conditional probabilities P(s; = mj|f;)

of having ”s; gives modality m;”

knowing that ”system
is in f; fault” for any k € {0, ...,n}, — 1} are also avail-
able in the C/(i, j) cell. These conditional probabilities are
normalized as shown on equation 1. For any modality m;,
which does not belong to the C(i,j) modalities set then

P(s; =mi|f)) =0.

> P(s; =milfi) =1 (1)
k=1

For the following, C represents the cross-table corre-
sponding to the F and S sets and C(i,7), the cell of C
relative to the fault f; and the test s;.

D. Diagnosis tree

Formally, a diagnosis tree may be viewed as an
AND/OR tree (see [2] and [5]). Actually, it is composed
of two kinds of nodes : the OR nodes which correspond to
the current set of the possible faults and the AND nodes
which correspond to one test and its different resulting
modalities.

Of course, the root node is an OR node composed of
all the possible assumptions (faults) for the studied sys-
tem. One leaf node is also one OR node represents at
most one possible assumption. A not leaf OR node has
one and only one AND node child corresponding to the
test to apply whereas an AND node has several OR node
children corresponding to the several possible modalities
of the relative test. The figure 1 gives an AND/OR tree
representing a diagnosis tree of 4 faults {fi,..., f1} using
5 tests {s1,..., 85}

For the following, let T be a diagnosis tree which dis-
criminates the faults of the F' set with tests of the S set
according to the cross-table C. Let also ny be the number
of leaves {l1, ..., I, } and P(l;) the occurrence probability
of each l; leaf such that Y ., P(l;) = 1. At last, let d;;
be a boolean variable equal to 1 if the s; test belongs to
the path from the root to the I; leaf and 0 otherwise.
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Fig. 1. Diagnosis tree

The objective function K of a diagnosis tree T, defined
by equation 2, is proposed to evaluate the different possi-
ble diagnosis trees of a same system and, then, select the
optimal one.

K(T) = ip(l’) X f:dl.] X Cj (2)

Under unit test cost assumption, the objective function
K(T) is equivalent to the mean depth of the tree T'.

E. Discriminating tests subset

A tests subset is said to be discriminating for a set of
faults if it is able to discriminate all the faults of the set.

Definition 6 (Minimal Discriminating tests subset)
A discriminating tests subset S is said to be minimal if
and only if, for any of its ng tests s; with j € {1,...,ng},

S — {s;} is not able do discriminate all the faults of the

set.

Definition 7 (Optimal Discriminating tests subset)
An optimal discriminating tests subset is a discriminating
test subset composed of the tests effectively used by a given
optimal diagnosis tree for the considered faults set.

Moreover, it is important to underline that, for a same
initial tests set, it exists as many optimal discriminat-
ing tests subsets as optimal diagnosis trees using different
tests subsets.

While the tests set S is not a discriminating set for
the faults set F', the corresponding cross-table C' does not
have a sufficient discrimination power to build a diagnosis
tree.

It is then necessary to recursively add tests to S or re-
move faults from F' and update the corresponding cross-
table C' in order to study if the updated S set is a dis-
criminating for the updated F' set.

III. PATTIPATI’S METHOD

A. Presentation

From the faults set F, the tests set S and the corre-
sponding cross-table C, the Pattipati’s method allows to
find the optimal diagnosis tree by using an AND/OR tree
exploration algorithm (i.e. AO* algorithm).

In Pattipati’s studies (see [2] and [5]), only exclusive
binary tests are considered. First of all, it is important
to remark that a diagnosis tree using only exclusive tests
proposes one and only one leaf for each of the faults to
discriminate then ny = npg.

Then, in accordance with the optimality general crite-
rion 2, the objective function K (T') may be written as
shown on equation 3.

nrg ns
K(T) =Y pix Y dijxc; (3)
i=1 j=1

B. AO¥* algorithm

An AO* algorithm is based on an AND/OR search tree.
An AND/OR search tree contains AND nodes which have
the property to be true if all their children are true and OR,
nodes which have the property to be true if at least one of
their children is true. As already said, a diagnosis tree can
be viewed as a succession of OR nodes and AND nodes.
An OR node represent the set of the current possible faults
and have one AND node child corresponding to the test to
apply whereas an AND node represent one test and have
several OR node children corresponding to the different
modalities of this test.

The explicit AND/OR search tree represents all the
possible solutions of a problem starting from the ground
elements of this problem. In the optimal diagnosis tree
problem, ground elements are the faults set F', the tests
set S and the cross-table C'. Obviously, the possible solu-
tions are all the diagnosis tree 7' which allow to discrimi-
nate all the faults of F' using of any subset of S.

Because of this generally too high complexity, the im-
plicit AND/OR search tree is rarely totally expressed.
Then, the idea of the AO* algorithm is to develop only
parts of the implicit AND/OR search which correspond
to the most interesting solutions of the problem, accord-
ing to the objective function to optimize. This sub-tree of
the implicit AND/OR search tree is selected according to
the most pertinent as possible heuristic evaluations and
called the explicit tree. The more the heuristic evalua-
tions are pertinent, the more the explicit tree does not
grow too much and keeps only the most interesting solu-
tions. The optimal solution of the problem can be find
inside the explicit AND/OR search tree. Consequently,
the optimal diagnosis tree T is a selected sub-tree of the
explicit AND/OR search tree developed during the AO*
algorithm.



Given an OR node Nof the explicit tree, H(N) repre-
sents an admissible heuristic estimated value (see later for
more) of K (T5) where Ty is the optimal sub-tree having
N as OR node root whereas F'(N) represents the current
estimated value of K(Ty). If N is a leaf of the explicit
tree then F(N) = H(N).

1. Initialization

At the beginning of the AO* algorithm, the explicit
AND/OR search tree is composed of only its root,
called N,., which is an OR node representing all the
faults of F. The marked current optimal diagnosis
tree T* is also composed of only this OR node. L*
is the set of the expandable OR node leaves of the
current T tree, that is to say, leaves which do not
correspond to isolated fault (i.e. real leaves of the
definitive diagnosis tree).

The F(N,) value is initialized to the heuristic value
H(N,) computed for this OR node. Moreover, the
probability of an OR node being the sum of the faults
mentioned in this OR node, the probability of the N,
node P(N,) is the sum of the occurrence probabilities
corresponding to all the faults to discriminate, so,
equal to 1.

2. Iterative treatment
At each step of the AO* algorithm, one of the OR
node leaves of the selected current optimal diagnosis
tree T, called N, is developed. This OR node is
developed by creating all its n4 AND node children,
called NJf4 with j € {1,...,ma}, relative to all the
available tests. Each of these just created AND node
N ]A is itself developed by creating their ny, OR node
children, called Nj?k with k € {1,...,n},}, relative to
the n}, different modalities of the corresponding test.

For each created OR node N7, leave, F(N?,) is com-
puted as H(Njo’k). Then, for each created AND node
N;‘ leave, F(N]A) is computed as Test_C'ost(N]A) +

J

>k F(ND)-

At last, a recursive treatment is then applied on the
successive nodes met on the path from the current
OR node N, to the root N,. This treatment consists
in updating successively the F' values of these nodes
and the marks of the selected AND nodes which con-
stitute the current optimal diagnosis tree 7.

If the current node to update N, is an OR
node, the mark on its selected AND node child,
if any, is removed. F(N.) is then computed
as min’y ;"N F(jth_Child(N,)) and the AND
node child for which this minimum is reached is
marked.

If the current node to update N¢ is an AND node,
F(N.) is then computed as
Test_Cost(N,.) + 3 p b MN) p(kth_Child(N.)) x
F(k*" _Child(N.)).

While the current node to update IV, is different from
the root N,, the current node to update becomes the
father of V..

3. Stop condition
The AO* algorithm stops when the set L* of the ex-
pandable OR node leaves of the current optimal di-
agnosis tree T* is empty.

Then the marked current optimal diagnosis tree 7™
is the definitive optimal diagnosis tree and K(T*) =
F(N,).

C. Admissible Heuristic

As seen before, the AO* algorithm uses a heuristic eval-
uation function, more simply called heuristic, H to orient
the search. For a given OR node, a heuristic is a function
which gives a more or less rough evaluation of the objec-
tive function K value of the optimal diagnosis sub-tree
having this OR node as root.

Then, let N be the studied OR node, and Ty, the opti-
mal diagnosis sub-tree having N as root. Let also H*(N)
be the exact evaluation of K (T'%) and H(N), an estimated
evaluation K (T%). It has been proven that if, for each OR
node N, H(N) < H*(N) (property of admissibility, see
[6]), then the algorithm converges to the optimal diagnosis
tree T™.

Moreover, the convergence rate is directly related to
the quality of the heuristic H. The closer H(N) is from
H*(N) for any OR node N, the lowest is the number of
useless OR nodes (i.e. OR nodes which should not appear
in the definitive optimal tree T*) expanded during the al-
gorithm. This can be easily illustrated by considering the
two extreme cases : without heuristic and with a heuristic
H such as H(N) = H*(N) for any OR node N.

o Without heuristic
Without heuristic, explicit tree has to be completely
explored in order to find the optimal diagnosis tree
T*.

o With a heuristic H such as H(N) = H*(N) for any
OR node N
With such a heuristic, the optimal sub-tree T is ob-
tained immediately without expanding any useless
node.

D. Huffman algorithm

Property 1 (Node Ordering Condition) In case of
exclusive tests, under unit cost test assumption, if a diag-
nosis tree T verifies the node ordering condition, that is to
say : each node of the at® level has an a priori occurrence
probability greater than the one of any node appearing on
the b" level such that d > b > a > 0, where d represents
the diagnosis tree depth, then, T is an optimal diagnosis
tree according to the objective function K.



Proof 1 (Node Ordering Condition) As seen previ-
ously, the objective function K, with exclusive tests under
unit cost assumption, is expressed as shown on equation
3.

Let f; withi € {1,...,np} be one of the nr faults to dis-
criminate and p; their respective occurrence probabilities.
Moreover, let fr, and f; with k # 1 and k,l € {1,...,np}
be two particular distinct faults such that pp > p;. Let
sj with j € {1,...,ng} be one of the ng binary exclusive
available tests and c; = 1 its unit cost, d;; is a boolean
variable equal to 1 if the s; test belongs to the path from
the root to the l; leaf and O otherwise. Then let C' be the
cross-table of the fault f; set with the test s; set.

Now, let Ty and Ty be two almost identical diagnosis
trees allowing to discriminate the np faults with a sub-set
of the ng tests according to the cross-table C'. Let a and
b be two different levels of the diagnosis trees Ty and Ts
such that d > b > a > 0, where d represents the depth of
both trees.

For the diagnosis tree Ty, f; is placed on level a and fy
on level b and its objective function K(T1) can be written
as shown on equation 4.

ng ns
K(T) = (pexb)+mxa)+ > pix| Y dij| (4)
i=1,i{kl} =

For the diagnosis tree Ts, fi. is placed on level a and f;
on level b and its objective function K(Ts) can be written
as shown on equation 5.

ng ns
K(T) = (mxb)+mexa)+ Y pix | Y dy| (5)
i=1,i{k 1} i=1

Knowing that b > a, expressions 4 and 5 become respec-
tively expressions 6 and 7.

ng ns

((prtp)xa)+(pex(b—a)+ > pix| Y dij | (6)
i=1,i#{k,l} j=1
nrg ns

(petp)xa)+(px(b—a))+ > pix| D di | (7)
i=1,i#{k,l} Jj=1

As pp > p, K(T1) > K(T»). So, the application of
one permutation according to the node ordering condition
reduces the objective function value. Moreover, once all
the nodes of the current tree are sorted by level, this tree
verifies the node ordering condition and no more permu-
tation, according to the node ordering condition, may be
applied. Consequently, the objective function value of this
diagnosis tree can not be reduced and is minimal. Hence,
this obtained diagnosis tree is the optimal one T™*.

14 nr;

Create np leaves corresponding to the np faults;

While(i > 1)do
Order the i faults by their decreasing probability;
Di—1 + pi—1 + p;i (i.e. the two least probabilities);
Create new node f;_; father of f; and old f;—; nodes;
Remove f; fault and p; probability from the faults set;
ii—1;

End While

Return node f; root of the created optimal tree;

Fig. 2. Huffman algorithm

Theorem 1 (Huffman) In case of exclusive and binary
tests, under unit cost test assumption, the Huffman algo-
rithm creates an optimal complete binary diagnosis tree
according to the objective function K.

Proof 2 (Huffman) From the previous property, it can
be deduced that the two least occurrence probability faults
of the considered faults set are always placed on the deep-
est level of the optimal diagnosis tree corresponding to
this faults set. Actually, at each iteration of the Huff-
man algorithm, the two least occurrence probability faults
are found, these two faults are removed from the studied
faults set and a new fault is created which has, as occur-
rence probability, the sum of these two least occurrence
probabilities. This new virtual fault is, in the complete
binary tree, the father node of these two precedent least
occurrence probability faults. So, at each iteration of the
Hujffman algorithm, a new faults set is considered and the
two least occurrence probability faults of this set are af-
fected to the two deepest leaves of the optimal diagnosis
tree corresponding to this set. Consequently, by applying
recursively the previous reasoning and treatment, node or-
dering condition is always verified and, according to the
previous property, optimality is ensured. Moreover, an op-
timal binary diagnosis tree T* obtained by Huffman algo-
rithm is always complete (i.e. T* does not contain empty
leaf) by construction.

E. Pattipati’s Heuristic

The Huffman algorithm builds an optimal diagnosis tree
composed of a sub-set of exclusive binary tests s;, with
their respective test cost ¢; = 1, among the ng available
ones.

This obtained optimal diagnosis tree is not optimal any-
more if the unit test cost assumption is removed. So, in
this case, an AO* algorithm has to be used in order to
find the optimal diagnosis tree.

The Pattipati heuristic, called H,,, is based on the di-
agnosis tree obtained from the Huffman algorithm and
takes into account the different test costs such that it is
always lower than the exact evaluation H* in order to be
admissible.



Let N be any OR node and K* = K(T™*) the optimal
objective function value of the optimal diagnosis tree 7™
obtained by the Huffman algorithm for the set of faults
which are contained in N under unit test cost assump-
tion. The ng available tests are ordered by increasing
costs such as 0 < ¢ < ... < ¢py. The admissible heuristic
H,, proposed by Pattipati is then expressed as shown on
equation 8 where K is the integer part of K*.

:icj+ ([K

This heuristic is equivalent to build a Huffman tree with
the tests which have the lowest costs. Consequently, this
heuristic verifies the admissibility property, and hence,
leads to the optimal tree by using the AO* algorithm.

~Elxeen) ®

F. Faults occurrence probabilities propagation

For a given OR node N, of the AND/OR search tree,
let P.(f;) with be the occurrence probability of the np
faults of the F set at the OR node N..

To compute the occurrence probability P; s ( fl) of the f;
fault on the OR node N . associated to the mJ, modality
result of the realization of the test s; at the node N, one
have to use the equation 9.

Pji(fi) = P(sj = mj| fi) x Pe(f:) (9)

Any P(s; = ml|f;) value with k € {0,...,n}, — 1},
i € {1,..,nr} and j € {1,...,ns} can be found as the
computed probability corresponding to the m; modality
in the cell C(i,j) of the cross-table C' corresponding to
the f; fault and s; test.

Consequently, for each created OR node during the
AO* algorithm, the occurrence probabilities correspond-
ing to the possible faults mentioned in this OR node may
be computed according to the equation 9.

IV. ADAPTED HEURISTIC

A. Introduction

The previous section shows that an AO* algorithm with
the Pattipati’s admissible heuristic H,, is able to find an
optimal diagnosis tree for exclusive binary tests having
different test costs.

In this work, it may happen that a same fault occurs
in more than only one modality proposed by a test. This
test is called non exclusive test. It may also happen that
a test has more than two modalities. This test is called
multi-modality test.

This section explains how these two test characteris-
tics are taken into account in the Pattipati’s admissible
heuristic H,, in order to preserve its admissibility.

B. Non Exclusivity Assumption

As already seen, in case of non-exclusive tests, a same
fault may appear in several leaves of a diagnosis tree.

Let n} be the number of I} leaves with h € {1,...,n%}
containing the f; fault. Let p} with h € {1,...n}}
be their respective occurrence probabilities such that
Zh . pi = 1. Then, the occurrence probability of the
fi fault, at the [} leaf, called P,;L(fi), may be written as
shown on equation 10.

Pz; (fi) = pi X P},
i (10)
2 B =3 | px ) pi] =1
i=1 h=1 i=1 h=1

So, the initial expression of the objective function K
shown on equation 2 can then be changed into equation
11 where d(; ), ; is a boolean variable equal to 1 if the s;
test belongs to the path from the root to the [; leaf and
0 otherwise.

np N

=3 Pu(fi)x

i=1 h=1

Zd(lh X Cj

Moreover, it seems obvious that the non exclusive test
assumption makes the discrimination of a given faults set
with the same tests set more difficult. That is, the optimal
diagnosis tree obtained by the Huffman algorithm with
the non exclusive test assumption is deeper than the one
with the exclusive test assumption.

Consequently, assuming a priori the test exclusivity as-
sumption in the Pattipati’s admissible heuristic H, does
not affect its admissibility (see notion of asymmetrical
tests in [7] and [8]).

However, it is important to underline that, if some of
the tests are effectively non-exclusive, this decreases the
quality of the heuristic (i.e. the distance between H,, and
H* increases).

(11)

C. Multi-Modality Assumption

At the contrary, the test multi-modality assumption
makes the discrimination of a same faults set with a same
tests set easier than the binary test assumption. That
is, optimal diagnosis tree obtained by Huffman algorithm
with the test binary assumption is deeper than the one
with the multi-modality test assumption.

Consequently, considering in priority tests which have
the biggest modality cardinality in the equivalent Huff-
man tree proposed by the admissible heuristic H, min-
imizes the depth of this tree and, so, allows to keep its
admissibility property of H,,.

Let Ty be the optimal diagnosis tree obtained by Huff-
man algorithm for the considered faults set and exclu-
sive binary tests under unit test cost assumption. The



multi-modality extension algorithm modifies T} in order
to obtain the optimal diagnosis tree T, for the consid-
ered faults set and exclusive multi-modality tests under
unit, test cost assumption.

Order the ng test modality cardinalities
such as (My > ... > My, > 2);
1+ 1;
Finish < false;
While((Finish = false)AND(M; > 2))do
Finish + true;
For all non-leave nodes of level (i — 1) do
Card + 2;
While ((Card < M;)
AND(3 at least one non leaf child)) do
break the biggest child;
Card + Card + 1,
reorder the children of the studied node;

End While
If (Card = M;) then Finish « false;
End For
141+ 1;
End While

Fig. 3. Multi-modality extension algorithm

Theorem 2 (Multi-Modality Extension) From the
optimal diagnosis binary tree obtained by Huffman algo-
rithm T}, the multi-modality extension algorithm builds
the corresponding optimal diagnosis tree 1), taking into
account the different modality cardinalities of the avail-
able tests.

Proof 3 (Multi-Modality Extension) As previously
seen, the objective function K, with exclusive and binary
tests under unit cost assumption, is expressed as shown
on equation 3. Now, considering that some available tests
may also have more than 2 modalities, this expression of
objective function K does not change.

First of all, it has to be proven that, at each step of
the multi-modality algorithm, the current tree T, keeps
always optimal according to the objective function K for
the current considered modality cardinality M;.

To reach this optimality, the current tree T}, has to ver-
ify the node ordering condition (according to the property
1). Let A be the studied node during the multi-modality al-
gorithm and Ty the three first levels of the binary sub-tree
for which A is the root. The general case is considered,
where these three levels are assumed to be full (the mazi-
mum number of nodes that can be placed on the three first
levels of a binary tree is 7) as shown on figure 4.

The relations between these seven mnodes named
{A,B,C,D,E,F,G} whose respective probabilities are
{pa,pB,DPC,PD,PE,PF, DG}, involved by the construction
of the tree according to the Huffman algorithm, are ez-
pressed on equations system 12 and consistent with the

node ordering condition (according to property 1 and the-
orem 1).

Fig. 4. Central treatment of the multi-modality extension algorithm

pa =pB+pc
pB =PpDp +DPE
pc = pr +pa
pB = pc
PD 2 PE
PF 2 Da
bc 2 pp
\ PE 2 DF

The tree Ty (see figure 4) is obtained by applying the
central treatment (i.e. “break the biggest child;” and "re-
order the children of the studied node;”) on node A of the
tree Ty. The relations between the nodes of the resulting
tree T} are expressed on equations system 13 and keep also
consistent with the node ordering condition.

PpA =pc +pp +DPE
pc = pr +pa

pc > Pp

PD 2 PE

PF 2 Da

PE 2 PF

Consequently, the multi-modality extension algorithm
applied on a binary diagnosis tree obtained by Huffman
algorithm verifies this node ordering condition at each of
its steps and, so, ensures optimality of the objective func-
tion K.

Then, it is important to prove that affecting the it" high-
est modality cardinality test to the it" level of the tree is
the optimal way to decrease the depth of the tree and so
to decrease its objective function K value.

Let the respective occurrence probabilities p; with i €
{1,...,nr} of the np faults of the F set be such that 1 >
P1 > ... > ppp > 0. Let also s; and s, be two particular
tests among the S set for which their respective modality
cardinality are ny, and ny, such that ny, > nf, andny, <
nr < (nh, x nk,).

In the diagnosis tree T, s; is applied on first level and
sy on the second one, then, the number of faults ny is such
that nyp = n%, —a+ (a x nk;) with 1 < a < n’,. So, the
expression of the objective function K for this diagnosis
tree T; can be written as shown on equation 14.
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K(T;) = (14)

In the diagnosis tree Ty, s, is applied on first level and
sj on the second one, then, the number of faults ng is such
that np = n%, — b+ (b x n),) with 1 < b < n},. So, the
expression of the objective function K for this diagnosis
tree T}, can be written as shown on equation 15.

ng/l_b nr
KT)=1x Y pi|+|2x > p (15)
i=1 i:nﬁlI*bJrl

So, if nl; —a > nk, — b then K(T;) < K(T}) else
K(T;) > K(Ty).

J k
i : ; ng —n ng—n
i _ E o _ i _ M ko M
ny —a>ny —beny, Pa— > nar 7
ni; — ny — 1

After development and simplification, this expression
can be written as follows:

(0 x nfp) —np) >0k (0, x nky) —np)

Since np < (n%, x nk;) and ny, > nk, are true by

hypothesis, K(T;) < K(Ty). Consequently, applying the
it" highest modality cardinality test on the i*" level of the
diagnosis tree allows to reach optimality.

D. Heuristic in Case of Non FExclusive Multi-Modality
Tests

As previously seen, using different test costs, an AO*
algorithm has to be used in order to obtain an optimal
diagnosis tree. Contrary to the case of exclusive binary
tests, Pattipati heuristic is not computed from the optimal
binary diagnosis tree T} obtained by the Huffman algo-
rithm, but from the optimal multi-modality diagnosis tree
T}, obtained by the multi-modality extension algorithm
applied on the T} diagnosis tree initially computed.

According to the Pattipati’s method, the ng available
tests are always ordered by their increasing costs such
as 0 < ¢ < ... < cpg and the admissible heuristic H,
expressed as already shown on equation 8 where K "is the
integer part of the optimal objective function value K*.

This heuristic is equivalent to build a Huffman tree with
the highest available modality cardinality tests affected by
the lowest available test costs. Consequently, this heuris-
tic reaches the admissibility property, and so, leads to the
optimal tree by using the AO* algorithm.

However, if the tests which have the highest modality
cardinalities do not have the lowest costs, the quality of
the heuristic is decreased (i.e. the distance between H,
and H* increases).

V. OPTIMAL DISCRIMINATING TESTS SUBSET

The only available relation between a discriminating
tests subset S* with its relative optimal diagnosis tree T"
and an optimal discriminating tests subset S* with its
relative optimal diagnosis tree T issued from a same tests
set S is given by theorem 3.

Theorem 3 (Optimality)
$*C S = K(T') = K(T

Proof 4 (Optimality) If S = S* then T = T* (since
they are obtained from the same AO¥* algorithm) and then
K(T') = K(T™).

IfS* C S then T  may be completely different from T*
but K(T') is obligatory equal to K(T*). Since T* may
obtained by performing the AO* algorithm from the tests
set S as well as from the optimal tests subset S*, equations
16 may be written.

{ S'CcS = K(@T)>K(T* (16)
s*cS = K(T*)>K(T)

Hence, the result K(T') = K(T*) easily follows.

However, it is impossible to have an a priori knowl-
edge of one or several optimal tests subsets S* without
performing the AO* algorithm. The objective function
K is dedicated to diagnosis trees but can not be applied
to discriminating tests subsets. Actually, from a same
discriminating tests subset, many diagnosis trees having
distinct values according to the objective function K may
be obtained.

Consequently, there is no way to reduce the initial tests
set S to a discriminating tests subset S such that |S'| <
|S| with the certainty that S* C S'. Then, the only way
to obtain the optimal diagnosis tree T is to perform the
AO* algorithm from the initial tests set S, since S* C S.

From the initial tests set .S, it is impossible to define an
optimal discriminating tests subset S* or even a discrim-
inating tests subsets S" such that S* C S" and S’ #S.

Optimality is ensured only for the diagnosis trees ob-
tained by execution of AO* algorithm from the S initial
tests set. For any discriminating tests subsets S of S,
nothing can be told about the optimality of the corre-
sponding diagnosis tree T obtained by execution of the
AO* algorithm.

VI. SUBOPTIMAL DISCRIMINATING TESTS SUBSET

A. Presentation

This section discusses methods which allow to generate
sub-optimal discriminating tests subsets S" which are ex-
pected to give diagnosis trees T" as close as possible to the
optimal one T obtained with the optimal discriminating
tests subset S*.



According to the objective function K, the optimality
is based on both notions of cost and discrimination power
of the subset of the available tests used in the diagnosis
tree. By working exclusively on discriminating tests sub-
sets, the notion of discrimination power is always reached.
However, it is necessary to be able to evaluate the cost of
these discriminating test subsets in order to select the one
which has the lowest cost.

Obviously, the ideal evaluation of the cost of a discrimi-
nating tests subset S° would be proportional to the K (T")
associated to the optimal diagnosis tree T obtained by ex-
ecuting the AO* algorithm. However, it is very difficult to
predict the K (T") value from the S’ tests subset without
knowing T itself.

Consequently, the cost of a tests subset is then simply
evaluated as the sum of the costs corresponding to the
tests which constitute this subset.

B. Finding best discriminating tests subset

Finding the best discriminating tests subset S* is itself
a NP-complete problem. Actually, it is possible to show
an polynomial reduction of this problem from the NP-
complete 3-SAT problem following the NP-completeness
demonstration of the knapsack problem (see [9]).

Let G = {g1,...,9ns } be the set of the ng signatures
of the np faults of the F' set among the ng tests of the
S set. . Since one fault has at least one signature, ng >
nr. Each g; signature has ng components o; ; with j €
{1,...,ns} which is one of the n%, modalities mi with
k € {0,...,n%, — 1} of the s; test.

Let V = (v1, ..., vng) T, Vo; € {0, 1} be the test selection
vector such that if s; belongs to S* then v; = 1 else v; = 0.
If D = Maxjeq,....ng}7), then any signature g; among
the test subset defined by V' may be evaluated according
to the Ep v function as shown on equation 17.

ED,V(gi) = X0'i71 XD0+' . ‘+’Un5 Xai,ns ><l)n5_1 (17)

Then, a tests subset represented by the vector V' dis-
criminates all the faults of the F set if and only if the ng
relative evaluations of signatures reduced to the compo-
nents corresponding to the subset are distinct two by two.
This can be expressed as shown on system of ngp = Cfm
equations 18 with 1 <k <[ < ng.

Epv(g) — Epv(g) # 0

: - : £
Epv(gr) — Epv(g) # 0 (18)

: - : £

ED,V(gncfl) - ED,V(gnG) # 0

This optimization problem may then be expressed as :
find the V vector corresponding to a discriminating tests
subset such that Z;L; vj X ¢; is minimal.

The NP-completeness theory being restricted to deci-
sion problems (i.e. problems which have yes/no solu-
tions), this optimization problem has to be formulated
into a decision one by adding in any instance of this prob-
lem a vector B = (by, ..., b, )T, Vb; € Z* corresponding to
the gap between two distinct signatures over the selected
tests.

Consequently, the optimization problem may be trans-
lated into the following decision problem : does it ex-
ist a vector V. = (vy,...,vn5)T which verifies equations
system 19 with 1 < k < [ < ng for the given in-
stance (S,G, B) (S ={s1,..;8ns }, G = {91, -, Gne } With

gi = (051, 0ing)T and B = (b, ..., b)) 7).
Ep,v(g1) - Epv(g) = by
Pox) — Fovla) = by
\ ED,V(-gncfl) - ED,V.(gnG) - b

(19)

Let A be the (ngxng) matrix composed of a; ; elements

with ¢ € {1,..,ng} and j € {1,...,n5}. To each a;; is

associated one term (o, ; — 07,;) X DI=! of the equations

system 19 with 1 < k < [ < ng such that this equation

system may be written under a matrix form A x V = B
as shown on equation 20.

ai,1 a1,ng VU1 by

(20)

Ung,1 Ung,ng Uns bnE

At last, the previous decision problem may be sim-
plified into the following one : does it exist a vector
V = (v1,-,vns)T which verifies A x V. = B for the
given instance (A,B) with {a1,1,...,anpns} € Z and
{b1,...,bn,} € Z*.

Theorem 4 (NP-completeness) The problem, defined
as previously and called the best discriminating subset
problem, is an NP-complete problem.

Proof 5 (NP-completeness) Consider o Turing ma-
chine M that on any instance (A,B) of the prob-
lem nondeterministically assigns values from {0,1} to
{v1, ..., Ung }, checks whether equations system 20 is veri-
fied and accepts if and only if all these equalities hold. M
can be of polynomial time complexity. Therefore, the best
discriminating subset problem is in NP.

To show that the best discriminating subset prob-
lem is NP-complete, consider any instance I of the 3-
satisfiability problem. Let x; with i € {1,...,m} be the
variables in the Boolean expression I. I is a conjunction
Cy A ... NCy, of clauses C; withi € {1,...,k}. Fach C; is a



disjunction of some literals c; ; with j € {1,...,3}. Each
cij sy or —~xy forl € {1,...,m}.

From the Boolean expression I the linear equations sys-
tem 21 can be built.

1 + =1

+ =
Tm + X, = 1
¢t + cp2 + caszs + yvig + vip = 3
+ o+ o+ =
L ¢k + Ck2 + k3 t+ Yk1 t* Yr2 = 3
(21)

The system 21 has the variables {T1, ..., T, 1, ..., T,
Y11, Yk2}. The variable x; (resp. &) with 1 €
{1,...,m} in 21 corresponds to the literal z; (resp. —x;)
in I. ¢;; stands for the variable x; (resp. ;) in 21, if x,
(resp. —m;) is the ji* literal in C;.

Each equation of the form x; + £; = 1 has a solution
over {0,1} if and only if either x; = 1 and & = 0,
or t; = 0 and ©; = 1. Fach equation of the form
cii+cia+cis+yi1+yi2 =3 has a solution over {0, 1} if
and only if at least one of the equalities ;1 =1, ¢;2 =1,
and c;3 = 1 holds. It follows that the system 21 has a
solution over {0,1} if and only if the Boolean expression
I is satisfiable.

The system 21 can be represented in a matriz form A x
Z = B as shown on equation 22 with n, = m + k and
no = 2m + 2k.

1,1 a1 ne 21 b1

] (22)
a'nL,l an

Anr,ne Zne

The variables {z1, ..., z2n, } in the vector form stand for
the variables {x1, ..., Tm, €1, .., Tm, Y11, -, Y2} Of 21, re-
spectively. a; ; is assumed to be the coefficient of z; in the
it" equation of 21. b; is assumed to be the constant in the
right-hand side of the it" equation in 21.

As a result, the instance I of the 3-satisfiability prob-
lem is satisfiable if and only if the (A, B) instance of the
best discriminating tests subset problem has a positive Z
solution.

Moreover, a polynomially time-bounded, deterministic
Turing machine can similarly construct corresponding in-
stance of the best discriminating tests subset problem,
from each instance I of the 3-satisfiability problem.

Consequently, the NP-hardness of the best discriminat-
ing subset problem follows from the NP-hardness of the
3-satisfiability problem.

C. tests subsets generation algorithm

This subsection proposes a two step discriminating tests
subsets generation algorithm. The first step allow to ob-

tain, from the S initial tests set, a discriminating tests
subset, called SJ’-ust such that S;-ust C S. The second
step generates from the previously obtained just discrim-
inating tests subset S.;'us“ a minimal discriminating tests

subset, called S,,;, such that S, ;, C S, €S-

First of all, the ng available tests of the S set are
ordered according to their decreasing heuristic function
E value order. Then, let sf with j € {1,...,ng} be
these ordered ng tests s; of the S tests set such that
E(sf) > ... > E(s¥) > 0.

Then, tests are selected one by one, according to the
previous order, until a discriminating subset, called S justs
of nj,s¢ tests such that njus € {1,...,ns} is obtained.

From the just discriminating tests subset S;ust pre-
viously obtained, a minimal discriminating tests subset,
called S, ;,, may then be generated.

First of all, a current tests subset S. is initialized to
S;.ust. The algorithm then tries to remove one by one,
from the current tests subset S, each of the n,,: tests of
S'ust» Starting from the last test s%,, to the first one s?’.

The current tried test sf with j € {1,...,njust} is re-
moved from S, if and only if the S, — {s¥} tests subset is
still a discriminating one. The final current S, tests sub-
set is the definitive minimal discriminating tests subset

S

min*®

VII. QUALITY EVALUATION

A. Presentation

The aim of this section is to propose a quality criterion,
called @, in order to compare different methods allowing
to obtain suboptimal discriminating tests subsets S" from
the initial tests set S. This quality criterion should be able
quantify, for each of these methods, the gain in terms of
AO* algorithm processing time according to the loss in
terms of optimality gap.

B. Optimality gap

Let T, T;ust and T, ;. be the optimal diagnosis trees
resulting from the execution of the AO* algorithm from
the initial tests set S, from the just discriminating test
subset S;ust and from the minimal discriminating one
Smin )

As S in
Smin g S.;'ust
according to the objective function K.

Now, let S* be the optimal discriminating tests subset
then, the optimal diagnosis tree resulting from the appli-
cation of the AO* algorithm on S* ason S is T*. A’ccord—

ing to theorem 3, if S* C S, ;. then K (T*) = K(T},;) =
K(T

respectively.

is obtained from S;ust itself obtained from S,

’ ’

C S, then, K(T*) < K(T,,,,) < K(T.,)

just m

’

’



1. IfS*C S, then S* = S, . . Actually, from the def-
inition, S* is at least a minimal discriminating tests
subset. So, for any S*, it exists at least one mini-
mal discriminating tests S}, such that S . C S*.
Consequently, if S* C Smm then S* is itself the only

one minimal discriminating tests subset S .. which

is equal to S,,;, otherwise S, ;, would not be a min-
imal discriminating tests subset.

min

2.If S* C S,y but S* ¢ S, then K(T*) =
K(T]ust) < K(Tmzn)
3. If S* ¢ S, then K(T*) < K(T},5) < K(T},;,)-

These three inclusion relationships between S, S;-ust,

S .. and S§* are illustrated on figure 5.

S* included in S’y

S* included in ;. but not in S’,.;, S* not included in S’y

Fig. 5. Inclusion relationships between S, s S . and S*

Just’ “min

C. Processing time

Let T, T]ust and 7,,;, be the processing times of the

AO* algorithm executed from the initial tests set S, from

the just discriminating tests subset S]ust and from the

minimal discriminating one S, respectively.

mzn’

As Smm is obtained from S ust itself obtained from S,
Spnin € Siust C S, then Card(S,,;,) < Card(S;,,) <
Card(S), hence 7, ; < T]ust <.

Now, let 7* be the processing time of the AO* algorithm
executed from the optimal discriminating tests subset S*.
As seen previously, no information are available about S*
and even about Card(S*) except, of course, Card(S*) <
Card(S).

Consequently, no comparison can be done between
Card(S*) and Card(S,,;,) or even Card(S]ust) The
only available result is that, for any S}, (at least one)
such that S},;, C S* (see the remark in the previous sub-
section), Card(Sy,;,) < Card(S*). However, nothing is
known about the order relationship between Card(Smm)
and Card(S,,;,).

Hence, no comparison can also be done between 7* and

*
T, . Or even T]ust Then, the minimal processmg AO

algorithm processing time may be either 7, or 7*.

D. quality criterion

Let S be the initial tests subset (supposed to be discrim-
inating), 7, its relative AO* algorithm processing time and

T, its relative optimal diagnosis tree.

Let S* be an optimal discriminating tests subset, 7*,
its relative AO* algorithm processing time and T, its
relative optimal diagnosis tree.

minimal

Let S' be either the S just just or the Srin
discriminating tests subsets obtained from the initial tests
set S, 7, its relative AQ* algorithm processing time and
T', its relative optimal diagnosis tree.

0 < K(T*) < K(T') and 0 < 7 < 7 are always
verified. Moreover, if S" is generated according the just

and minimal discriminating tests subset algorithm then,
S e{s }, and 0 < Min(r* <7 <.

Consequently, the quality criterion @), defined as shown
on equation 23, illustrates the interest of a discriminating
tests subset S as the gain in terms of AO* algorithm pro-
cessing time according to the loss in terms of optimality

gap-

just> mzn ’ mzn)

Min(7*, 'r,’mn)

o) - KT

(23)

This criterion may then be used, for any system to diag-
nose, to evaluate by a real [0, 1] value the relative interests
of the S initial, S just Just, S .. minimal or S* optimal
discriminating tests subsets.

in

E. Example

For 5 different systems ¥; with ¢ € {1,...,5} figure 6
details the computation of the Q(S’) values with S* be-
ing the S initial, S;-ust just, S, minimal or $* optimal
discriminating tests subsets.

ng represents the number of tests selected in the S’
tests set whereas n,» represents the number of tests effec-
tively used in the T diagnosis tree obtained by performing
the AO* algorithm on the S’ tests subset.

The processing time 7 is not directly used in the qual-
ity criterion Q(SI) computation. Actually, this informa-
tion is disturbed by the fact that the AO* algorithm has
sometimes to swap on the hard disk. The 7 value then
depends on the technical characteristics of the computer
used to execute the application. Consequently, the infor-
mation of the number of OR nodes which constitute the
whole AND/OR search tree developed during the AO*
algorithm execution is expressed for 7 .

Obviously, K(T") represents the objective function K
value of the T diagnosis tree obtained by performing the
AO* algorithm on the S tests subset.

On this figure, it is easy to see the Smm and S}ust
give acceptable suboptimal diagnosis tree according to the
objective function K value for a considerable reduction of
the application processing time expressed here as the total
number of OR nodes expanded in the explicit AND/OR
search tree.



7

[ng [np | 7 K@) [ QS ]

S 7] 4 46 || 2.5833 || 0.6304

S| S | 4] % 29 || 25833 || 1.0000
S .o 4] 4 29 || 25833 || 1.0000

S* 1 4 20 || 25833 || 1.0000

S 18] 10 1493 |[ 3.0007 || 0.1594

So [ Se | 119 728 || 3.0918 || 0.3268
S o 8] 8 238 || 3.1062 || 0.9950

S* | 10| 10 437 || 3.0007 || 0.5446

S 13] 6 213 || 2.6823 || 0.3192

S | S | 10 6 165 || 2.6823 || 0.4121
S o 6] 6 73 || 2.8448 || 0.8783

S* 6| 6 68 || 2.6823 || 1.0000

S 2] 9 287 || 3.7115 || 0.4077

S | o | 11| 7 251 || 3.7159 || 0.4656
Sl 71 7 117 |[ 3.7159 || 0.9988

S 9] 9 177 |[3.7115 || 0.6610

S || 57| 17| 33671 || 2.3289 || 0.0543

S4 | Sw | 33| 17| 10079 || 2.3289 | 0.1816
S o 15| 15| 1830 || 2.8817 || 0.8082

S* | 17| 17| 1840 || 2.3289 || 0.9946

S ][ 211 | 21 || 319886 || 1.7346 || 0.0083

S5 | Sue | 29| 21| 32308 || 1.7673 | 0.0802
S . 17| 17| 2641 || 2.6019 || 0.6667

S* |[ 21| 21| 10263 || 1.7346 || 0.2573

Fig. 6. Q(S’) values computation for different systems

VIII. CONCLUSION

This paper explains how Pattipati’s method has to be
extended to generate optimal diagnosis trees for non ex-
clusive multi-modality tests.

However, the application processing time being propor-
tional to the number ng of tests in the initial tests set
S, it seems interesting to reduce this S set in a subset s’
such that S° C S in oder to reduce also the application
processing time. The problem is that optimality of the
diagnosis tree T obtained from a tests subset S is not
ensured anymore for the initial tests set S.

A quality criterion @ is proposed in order to quantify
the gain in terms optimality measurement according to
the K function, of an optimal diagnosis tree T obtained
by execution of the AO* algorithm from a discriminat-
ing tests subset S' face to the relative gain in terms of
processing time of the AO* algorithm itself.

Two tests subsets SJ’-ust and S, ;, which can be obtain
with polynomial algorithm from the initial tests set S are
then proposed. Their respective (Q values are computed
for different systems. These @ values shows that is is pos-
sible to obtain acceptable suboptimal diagnosis trees and
to reduce considerably the application processing time.

One can imagine many other polynomial tests subset
selection algorithms, but anyway, it is always very difficult
to give an idea of the optimality gap, that is to say a
magnitude order of the difference between the optimal
diagnosis tree 7" obtained from the selected tests subset
S" and the absolute optimal diagnosis tree T™*.
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